All about curls and divs

A gentle introduction for those who missed out on vector
field theory as undergraduates, which should help dispel
the mystery surrounding vector field equations.

of James Clerk Maxwell’s remarkable

work on electric and magnetic fields and
how he related his model to the propagation
of light. After reading it, a student friend
soon took me to task and said that although
he had learned that James himself had
conjured up the terms curl and convergence
(nowadays oppositely directed as diverg-
ence), he still couldn’t see the wood for the
trees. “You see”, he went on, “I'm none the
wiser about what the curl and div — to say
nothing of grad — really mean” In answer I
said, “It is all to do with vector and scalar
fields; .they are the basis.” “Oh no!” he
replied, “we had a ghastly maths course
about them. That course is still a poor one,
you know.” I knew this observation could be
very true, as maths teaching is now some-
what grim in our educational system. No-
body seems to care enough about it.

But what of curl and so on? You do need
some knowledge of differential and integral
calculus, but most O-level syllabuses con-
tain a little about these topics now, so it isn’t
too frightening. The only little bit extra you
need is a nodding aquaintance with partial
differential coefficients?.

SCALARS AND VECTORS

Nearly everyone knows the difference be-
tween a scalar quantity and a directed
number, or vector. You would get some

In an earlier discussion' I covered a little
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raised eyebrows if in the grocers someone
asked for, “A pound of tomatoes, due North
please.” Or if elsewhere you heard, “I drove
my car at 60 mile/h — quite exhilarating.” To
which a comment was, “Where to?” and you
heard the reply, “Oh, anywhere, I just close
my eyes and go — it’s just the speed that
matters!”

Imagine we have entered a region of
space; a room, a pond or river, a box in a
laboratory — anywhere, to make measure-
ments on some quantity permeating the
region. Typically, your measurements might
apply to a draught in a room, or the
temperature distribution, or the water-flow
pattern in the river, or again, the electro-
magnetic radiation in the box. We call any
such region a field. It might be small, like
the box, bounded by walls of some sort. It
could be vast with undefined boundaries, or
“go off to infinity” as a mathematician might
say.

As an example, consider measuring the
temperature in the room. Point by point we
record the thermometer reading. Figure 1
shows what might be happening. Eventually
the data would apply to the whole volume.
We don’t say at some position that it is “22°C
East of North,” or any such thing. The
temperature is a scalar quality and the whole
distribution of our measuring points
throughout the volume is the appropriate
scalar field for this measurement.
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Fig.1...invisible surfaces all over your room.

Fig.2. ..crawling about with a vector field roaring aboutyour ears.
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The points are distanced apart and we
interpolate in between, so that we imagine
the field smoothly varying around the re-
gion. In fact, the same conditions of ‘con-
tinuity’ and ‘differentiability’ that interest
mathematicians regarding other functions
apply here also.

Light a candle. With it we can now
investigate the cold draught cutting across
our feet. The candle flame bends over point-
ing to where the draught is going. We judge
how strong the draught is by noting the
guttering of the flame. So as we crawl about
the room, we end up with some idea of how
strong the draughts are and the directions in
which they are blowing. Plotting all this out,
point by point yields the vector field of the
draught distribution, as Fig.2 shows.

You can think of this type of field as a
room full of lines, some crammed together
indicating high intensity regions, others
widely spaced in the weaker regions. They all
stream along in the various directions of
‘flow’ that meander from point to point.
These imaginary lines are the stream lines of
flux in such dynamic vector fields as fluid
flow systems. Victorian river and estuary
explorers had a fine old time plotting sources
and flows. Modern wind-tunnel technolo-
gists engage in the same practices.

James Clerk Maxwell appreciated Michael
Faraday’s genius in visualizing the ‘field
lines’ in the regions around electrically

draught)
. sfreamlines
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charged bodies and around magnets. And as
[ discussed earlier!, the whole edifice of the
hydrodynamicists with their ‘sources and
sinks’, ‘fluxes’, ‘pressure gradients’ (or
‘forces’), ‘stream functions’ and so on, ar-
rived on the electromagnetic field scene with
very few changes in terminology. We still
have sources and sinks, and fluxes —
although no actual flows of electric or
magnetic field occur. The one real “flux”
situation in our subject is the vector field of
conduction current flow.

GRADIENT

If we return to measure the (scalar) tempera-
ture distribution all over our imaginary
room, we soon discover sets of points at
which the thermometer reads the same
temperature. We find these points lie on a
‘surface’ which we might therefore call an
isothermal surface, which Fig.1 also shows.
The iso-surfaces cannot intersect anywhere,
or we would have the impossible situation of
two different ‘constant’ values at the same
point.

These constant surfaces characterize sca-
lar fields. Another observation soon shows
that the temperature changes most rapidly
when we move off the isotherm at right
angles to it. We could quickly plot all the
‘streamlines’ of greatest rate of change of
temperature, and find they all cross the
iso-surfaces at right angles. A vector field
results from all this plotting. We have found
the gradient of the scalar field. We write it as

grade = A
Alternatively as
Ve=A.

Here ¢ is the scalar field point function. In
other words, it is the magnitude of the field
qualtity measured point by point. A is the
derived vector field distribution point by
point. As you now see, we visualize A as
imaginary stream lines pervading the entire
region where the gradient of the scalar field
exists. Remember, they arise from the direc-
tions of the greatest rate of change in the
scalar field.

V is the Hamiltonian operator, which has
had a chequered history in all the names that
people have proposed for it. ‘Nabla’ was one,
another is ‘del’. It arose in the theory of
quaternions that Hamilton and Tait were so
keen on last century. Quaternions have died
out because not much use for them arose in
applied mathematics®. As a vector operator
V has proved very useful. The main thing to
remember about it is that it has all the
properties of a vector, but also differentiates
with respect to length, any variables upon
which it operates on its right hand side.

VECTOR FIELDS: DIV

Vector stream lines might arise on some
source and disappear at a sink. Think of the
draught blowing in a room. Streams of cold
air might be found issuing out of the keyhole
and under the door — and disappearing, say,
up the chimney. We could imagine a surface
surrounding a ‘source’, count the number of
stream lines coming out of it and subtract
any going into it. The result measures the
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Fig.3. The excess of vector field lines
issuing out of unit volume at a point in a
field over those going in, is the measure of
divergence.

Unit area

Fig.5. The measure (per unit area) of the
circulation of the field lines at a pointis the
curl of the vector.

Fig.4. Completely
closed stream
lines still means a
vector field — but
one in which there
are no sources or
sinks.

strength of the source of the vector. The
generating source ‘material’ is a scalar. It
might be concentrated at definite locations
or distributed around the region as a scalar
field. Measuring the vector field lines gener-
ated in this way coming from unit volume at
any point is called finding the divergence of
the vector field, and it is written

divD=por V.D=p

where D is the vectorrand p is the source
scalar quantity. V is the differential vector
operator again. V.D measures how rapidly
D is appearing per unit volume at a point, in
other words how concentrated the generat-
ing source quantity is there.

VECTORFIELDS: CURL

Vectors can possess a different property. A
second vector field can be derived from the
first one. Imagine we are in the draughty
room again. All the keyholes, fireplaces,
door surrounds might be well and truly
blocked, yet here is a huge draught roaring
past our ears. Then we notice the large fan
whirling the air round and round. We soon
realise that the flow lines form complete
closed paths or loops, like those in Fig.4.
They do not start and stop on any sources.
Further investigations show that there are
little closed flow loops distributed all over
the points of the region. At some points the
circulation whirls vigorously, at others
rather weakly — or hardly at all. These

vortices rotate in planes whose orientations
vary from point to point.

We can draw an imaginary line through
every little plane loop according to the
strength of the vortex per unit area at each
location. The lines point away at right angles
to the circulation planes in such directions
that the rotations go round them in the
sense of a corkscrew, as Fig.5 shows. Joining
all these new lines point by point gives
another vector field. This is the curl of the
first one. It measures the vorticity per unit
area:

curlB=Aor V XB=A.

You might notice the significant result
about the curl airising from this discussion.
A and B are always at right angles every-
where.

“The divergence operation gives a scalar
field from a vector, whereas the curl gives
another vector field from a vector. The
general vector field consists of combinations
of these two extremes. Separating the gener-
al field into its ‘curl’ part and its ‘div’ part is
called Helmholtz’s Theorem.

The main point I make now is that the
equivalent to scalar products in the vector
field situation is the div operation, while the
curl is a vector product operation. The
meanings of divand curl might now appear a
little less daunting.

You might have already noticed that as
curl fields start and end on themselves, you
can never have a divergence of such a field.
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Running away into the above discussion, |
have putthe cartbefore the horse, atleast by
assuming everybody knows about ordinary
vectors and how to multiply them. Quite a
number of people probably don't.

Adding two vectors is simple. We use the
‘parallelogram’ or ‘triangle’ rule that most
people no doubt did learn. Products of
vectors give rise to a little more thought. The
results all depend on how we define the
multiplication and this can be done in a
number of ways. Over the years, it has all
boiled down to two different products — one

; Fig.6. Work done

' by the component
: of a force shows a

i typical example of
: the scalar product

A«B=ABcos e=work done

— of two vectors. producing a scalar result, the other giving a
: : new vector. These products have survived,
We can write this as indeed have developed into ‘standards’ be-

cause they fit well into how physics, en-
gineering etc. describes things.

The first kind, Fig.6, known as the scalar
product — or ‘dot’ product as some people
callit, is simply

div curlA =0.

Again, div fields, and grad of scalar fields
never have lines that loop round and end on
themselves. This mean that

curldivD=0 A.B = ABcost
i where A and B are the two vectors with
or curl grade =0 magnitudes A and B and an angle0 between
always. them. This mens that if the vectors are at

right angles there is no product, because
c0s90° is zero. Of course, this product is the
multiplication of one magnitude by the mag-
nitude of the resolved component of the
other vector along the direction of the first.
For example, also in Fig.6, it gives the work
done by a force (A, say) moving along B, (The
z direction of A in general being at angle 0 to
B). However, the greatest value of A.B occurs
when the vectors are parallel.

The other product, illustrated in Fig.7, we
call the vector or ‘cross’ product. Itis

AXB =NABsin6

Now you see that the resolution takes the
other component, the ‘sine’ one and the
result is greatest for normal, or ‘orthogonal’
vectors this time. N is the direction vector or
unit vector such that if A is turned towards B,
N goes in the direction of an ordinary
corkscrew.

If we consider BxA instead, then N points
the other way. This means AxB is not equal
to BXA. In other words, A and B do not
commute in the cross product. Often this is
the first time students come across a non-
commutative algebra, (and some of them
come to grief atfirst). In fact,

Fig.7. The turning force at the end of an
arm — like that on the corkscrew shown,
constitutes an example of the vector pro-
duct.

VECTOR DIFFERENTIAL OPERATOR

The vector differential operator V, is admit-
tedly hard to visualize. It obeys the vector
rules for products etc., but also it is as we
have seen, a differential operator and works
on variable and functions ‘to the right’. In
other words, V.A is not the same as A.V,
where in the second expression V is looking
for something to operate on to the right of it.
V might be asked to operate on (that is,
differentiate) a product — such as V.(Ax B)
or V X(AXB). The rule for differentiating a -
product has to be obeyed and the rules for
| scalar and vector product expansion at the
same time. For example*

curl curlA = grad divA— VA

where V? is a second-order or double
differentiation. Or again

div(ExH) = H.curlE —E.curlH.

Both these expansions give valuable and
concise results and descriptions in the
mathematical modelling of the electric and
magnetic vector field distributions that
occur in e.m. theory.

Fig.8. The cartesian axes form the most
common ‘scaffolding’ upon which we erect
the dimensions and boundaries of real
technical and engineering problems.
When we want to show the vector prop-
erties in particular, the unitvectors i,j and k
are used to point the way.

AXB = —BxA

Atthis stage in proceedings, if you look into a
book dealing with vectors® you can have an
entertaining time working out some of the
multiple products like

CONCISE NOTATION
The value of vector notation lies in its . fi 2 ol Ax(BxC)
conciseness. A number of results, like the ‘: L4 1 7 Represents H or A(BxC)

above two, give a succinct view of what is
going on. Nevertheless, we usually return to
old René Descartes ‘scaffolding’— the x, y and I
z axes, when doing real life problems. This
applies especially to engineering situations
with rectangular symmetry, for example

Nobody has give a meaning to division by a
vector, so you won't come across that opera-
tion. This means that the denominator of
differentiations always contain scalars, or
scalar components of a vector, and so on.

rectangular waveguides. If the waveguide is
a circular one, the coordinates might be the
cylindrical set r, 0, z. If an aerial is radiating
into a sphere, we might choose the spherical
coordinatesr, 0, ¢.

All of these coordinate systems have axes
which are at right angles to each other at any
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Fig.9. Although the iron filings in this
famous old experiment are not curlH,
nevertheless they lie along the lines of
circulation of the magnetic field. Then if
you imagine the amount of this circulation
per unit area in the region, then you have
the idea of curlH there.

B e i B e e

It is normal practice to typecast vectors in
bold face or, as an alternative to underline
the characters, as in our drawings. Here they
are in light face as the text is in bold.
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point in space: in other words they form
orthogonal sets. Admittedly, as Fig.8 might
remind you, the rectangular set x, y, z is the
simplest.

If we put the properties of scalar and
vector fields into cartesian coordinates, we
get the three sets of equations that describe
the three components of each field.

) . S b |

V is equ1yalent to v ](,)y-‘l— k—(.,z
in cartesians. This shows the three compo-
nents explicitly. i, j and k are the unit vectors
along the x, y, and z axes.

Therefore grade, which is V¢, has the
three components

b g j@+ L
(D dy Jz
in cartesians and is a vector.
divA, also written VA, is

S0 g BEN G
bt Jay+ kg).(leﬂAﬁkAx)

which, when we notice i.i=1 and i.j=0 etc.,
is

oxX ay Jz

curlB, alternatively V XB, is

L N LA
(14 ot L)< (0B, 418, +B,)
Keep a sharp eye on the definition of the
vector product and you will see that iXi etc
=0, butixj =k, iXk =—jand so on, which
yields

(B IR R )
ay 0z dz  0x ox ay

for the three components of the vector
curlB.

The curl expansion, definitely the most
complicated, has a determinant expression
so that you can remember it easily

curlBul fpier e ke

oX 0V 07
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MAXWELL’S EQUATIONS AND
E M WAVES

With our little nibble at vector fields, we
arrive at one of the most famous sets of
equations to grace the table of science and
engineering. Oersted showed that a magne-
tic field H amps per metre sprang up round a
current flow in a conductor. You may re-
member the science master demonstrating
this with a card and iron filings, Fig.9.

Ampere wrote down a mathematical state-
ment about what might be going on. Using
our modern notation and units, together
with the idea of the current flow paths as a
vector field distribution, like that in Fig.10,
Ampere’s description amounts to saying that
the curl of the magnetic force at any point is
equal to the current density J streaming
through

curlH = Jamps m 2.

Michael Faraday found the inverse effect,
namely his Law of Electromagnetic Induc-
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tion. A changing magnetic flux field linking
a circuit causes a voltage round it. In vector
field terms we can write this as a changing
flux density B webers per square metre* at
any point sets up the curl of an electromotive
force field E volts per metre to circulate
round it. So Faraday’s Law says that the curl
of E is equal to the negative of the magnetic
displacement current density threading the
region, see Fig.11
gl S8B o2
at

An electric force field E sets up an electric
flux field D, usually called the electric
displacement, in a kind of ‘stress and strain’
relationship.

D = ¢E coulombm ™2
where e is the well known permittivity of the
medium in which the fields occur.

The units of € are farads per metre. You
can see that in the above, farads per metre
times volts per metre is equal to farads times
volts per square metre. You might recall that
a farad multiple by a volt is a coulomb.
Similarly the magentic force H sets up a
strain, the magnetic flux density B, so that

B = wHweberm™2or tesla

where w is the permeability in henrys per
metre.

The € and p look like ‘stress and strain’
moduli of some kind, relating electric and
magnetic forces with their fluxes. This is
rather like Young’s modulus in mechanical
stress and strain. No wonder the Victorians
struggled to invent an Aether in which all
these goings-on could occur. Many a genera-
tion of students say how perplexing to have
four vectors describing EM fields, but if we
think of them as a force field together with a
flux field in each case (the ‘stress and
strain’), it does help.

In our modern units, even a vacuum has
values for e and .. They are

5 faradm !

R A,
€07 36mx1

po=4mx10" henrym™!

Electric charge gives rise to the flux field D.

If there is a concentration p coulombs per

unit volume distributed in a region, then
divD = p coulombm 2.

Nobody has found isolated magnetic charge

yet, although people are looking. Therefore

divB = 0.

This means magnetic vector flux lines always
close on themselves.

We say they are solenoidal. And in some
discussions, authors write the magnetic flux
density in terms of another vector as B =
curlA, where A is called the vector potential.
Because of this, the only magnetic current
that can flow is magnetic displacement
current—aswe saw in Faraday’s Law.

We have one last result, not usually
included in Maxwell’s equations, which re-
lates the current flow lines coming out of a
region to the rate of change of charge per

*The S.I. Committee asks us to call aweberm 2, a tesla.

Curl H
4
5 N

Fig.10. CurlH goes round flux of current J
something like this.

Fig.11. Similarly for the rate of change of
flux density B. But notice the direction of
curlE in this case.

G
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Fig.12. The EM wave advances somewhat
like this diagram suggests. The E and H
field lines cross at right angles to each
other and with the direction of travel. For a
single frequency, the lines distribute along
the propagation axis in strength and with
reversal’s depicted in the lower part of the
diagram.

unit volume at each point in it. This is the
‘equation of continuity’

at
Now here is an interesting conundrum, a
problem Maxwell solved although not quite
this way. From your knowledge of vectors,
and the equation of continuity, you might
try getting the continuity result from the
curlH equation by taking its divergence

divi=-22 coulombm=3s~! (orampm2)

divcurlH=divl= 98

ot
This looks alright — but hold on, div of a curl
is always zero. Apparently we can never have
a charge changing with time! Maxwell got
out of this difficulty by looking at the other
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curl equation (the one for E) and by analogy
adding on to curlH a separate flux change
term which he called the electric displace-
ment current. So this equation with Max-
well’s revolutionary bit of addition, reads

curlH :J+aa—[t) ampm 2.
Now try the continuity equation

div curlH=div(J +%) =0

Taancans LoD
codivl=—div ot
The order of differentiation doesn’t matter
- div]= ~94ivD
% ot

and from the fact that divD=—p we have
directly

dle—— ot

So at last we have Maxwell’s equations.
For example, out in space, away from cur-
rentsJ and charges p, the equations are

curlH==+

curlE=—% with BDf:LUPl:{
= o

divD=0

divB=0

The two curl equations tell quite a story.
If, say, the electric field changes with time,
there must be an accompanying magnetic
field at right angles to it. If this is changing
with time also, then it sets up another
electric field — again at right angles. And so
on indefinitely. It looks as though E and H
can support each other in space. In other
words, a wave might exist. Notice the two
fields cross everywhere at right angles be-
cause of the curl property relating them. The
fields also lie across the line of travel, which
means that the wave is a transverse type and
will polarize. Therefore a plane electro-
magnetic wave travelling along the x axis
might look something like that shown in
Fig.12, ifwe could actually see the lines. This
set of results shows Maxwell had written
down the transmission line equations for
free space.

What we do with them now is to take the
curl of the first equation

—pp19D
curl curlH=curl o

As the order of differentiation doesn’t matter
and €, is a constant,

Ll e i)
curl curlH= T curlD—eoatcurlE.

But from the second curl equation,
Curl E=—0B/at, so insert it

oH
curl curlH=— Ho€oy2.

We know all about expanding curl curl of a

ito lcsw earth orbxt .

had succe&sfulfy: 1

_ transmitter capable of handlmg 606 telephone mrcmts or .
smgle teiev:smn channel; the upimk »frequericy was

~ orbited the ea}th once every 15'
_ varying between Qlﬁands& km.

ELECTRONICS & WIRELESS WORLD

vector from our previous discussions, there-
fore the piece de résistance:

’ oH
curl curlH=grad divH—- V*H= Po€o 2

; oH
T Hoeoa—tQ'

This is the famous wave equation. Here it
describes the magnetic field part of the
electromagnetic waves Maxwell predicted.
The electric field has a similar wave equa-
tion. The multiplier of the right hand, or
‘time’ term is always in this type of equation,
which, by the way, is called d’Alembert’s
equation, where c is the velocity of the wave.

This means that for our derivation with
Maxwell’s equations. And what is more, ¢

,works out to be very nearly 300 000 000

metres per second from the measured values
of €, and . This is the velocity of light in a
vacuum.
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